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Abstract 

 
Burns caused by scalding due to the tipping of a pot of hot water are a common 

cause of injuries in developing countries, where food is often cooked over small 

cookstoves that can be top heavy and inadequately supported.  An international 

standard for field testing of cookstoves is under development (ISO-19869).  In 

the course of drafting the safety assessment of this standard, questions arose 

about how to quantify the risks of kitchen accidents.  A quantitative definition 

of cooking pot stability requires knowing the angle at which a pot becomes 

unstable.  This article describes a calculation of stability for the simple case of a 

cylindrical container partially filled with liquid.   

 

Introduction 

 

ACCORDING TO THE WORLD HEALTH ORGANIZATION, burns 

are a global public health problem, accounting for many injuries 

and an estimated 180,000 deaths annually.  The majority of these 

occur in low-income countries, and the victims are primarily 

women and children.  For instance, in India, over 1 million people 

are moderately or severely burned each year.  But burns also are a 

common type of injury in developed countries.  Accidents such as 

burns and scalds are most commonly related to cooking [1,2]. 

 

Over the past five years, an international team of consultants in 

various fields have been developing ISO standards for the testing 

and evaluation of cookstoves [3,4].  "Cookstove" is the term the 

team used to describe simple, low-cost devices or structures for 

cooking.  They are typically fueled by wood, kerosene (paraffin), 

or bottled gas.  These devices are prevalent in less-developed 

countries.  Many governmental and nongovernmental 

organizations are involved in the research, design and distribution 

of improved cookstoves, and this effort has been promoted and 

coordinated by the Global Alliance for Clean Cookstoves [5,6].   

 

Recently the team has completed a Draft International Standard for 

field testing; this document will be released for public review in a 

few months.  Among other tests, it includes protocols for the 
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evaluation of safety of cookstoves in household settings.   In 

addition to kitchen observations by trained inspectors, the protocol 

calls for a "stability test" of cookstoves with a large pot of water.  

Observations of many cookstove settings indicates that quite often 

this arrangement is top heavy, and prone to tipping or spilling.   

 

The ISO standards should encourage designers to consider how to 

improve the stability of cooking vessels and the cookstove.   In an 

effort to quantify the stability requirements of a design, it would be 

helpful to define the stability criterion for the general case.   

 

The problem of the stability of a tipped cylinder or box has been 

worked out previously (for example, [7]), but here we will include 

the mass of a cylindrical container and review the calculations of 

stability.  Clearly this calculation could be applied equally to 

cooking pots, paint cans, 55-gallon drums, or any other cylindrical 

containers with thin walls compared to their diameter.   

 

The object of interest is a cylindrical container partially filled with 

a liquid.  The container is assumed to have thin walls relative to its 

diameter and is made of a material with density .  The container 

wall thickness is t.  The liquid has a density of .  The cylinder has 

radius a and the height of the container is h; the height of the liquid 

in the container when level is j.  

 

 
Figure 1. 
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From Figure 1, it is evident that the container will tip over when 

the center of mass extends beyond a vertical line from the pivot 

point.  Note that the pivot point could be placed at less than the 

radius a of the container, i.e. (a – p).  This is actually a common – 

and dangerous -- situation with cookstoves, where the stove has a 

smaller diameter than cooking vessels that are commonly used.   

 

Tipping over will occur when angles  +  exceed /2.  So the 

criterion for stability is  

 

𝜃 <
𝜋

2
− 𝑎𝑟𝑐𝑡𝑎𝑛 (

𝑧𝑚

𝑎−𝑝−𝑥𝑚
)     (1) 

 

where  is the tipping angle and xm and zm are coordinates of the 

total center of mass.   (This calculation is restricted to angles such 

that the height of the container h > j + a tan  so that the liquid does 

not spill out and the water level does not cut the bottom of the 

container).   

 

The calculation of center of mass can be facilitated by orienting the 

geometry so as to simplify the problem; by inspection symmetry 

can best be exploited by setting the origin at the center of the base 

of the cylindrical container.  The problem is simplified further by 

dividing the calculations into four parts: the cylindrical wedge of 

liquid, the cylinder-shaped portion of liquid, the cylinder walls and 

the circular base.  The centers of mass of each of these parts will 

be calculated and then combined to yield the total center of mass in 

rectangular coordinates as xm, ym, zm.  Figure 2 is an illustration of 

this setup.   
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Figure 2. 

 

Part 1 – liquid cylindrical wedge 

 

The mass of liquid in the wedge can be calculated by means of a 

triple integral: 

 

𝑚1 = 𝛿 ∫ ∫ ∫ 𝑑𝑧𝑑𝑦𝑑𝑥
(𝑎+𝑥)𝑡𝑎𝑛𝜃

0

𝑞𝑥

−𝑞𝑥

𝑎

−𝑎
 = 𝛿 𝜋 𝑎3 tan 𝜃 (2) 

 

where qx = √𝑎2 − 𝑥2 .  Although the volume (and hence mass) of 

this part could be found by inspection (it is half of the volume of a 

cylinder of equal height), the construction of the triple integral in 

rectangular coordinates will be useful for center of mass 

calculations.   

 

The center of mass of each part is given by the first moment divided 

by the mass of the part.  The calculation must be done for each of 

the coordinate axes.  The cylinder wedge moment relative to the xy 

plane (the z-axis) is given by  

 

 

𝑀𝑥𝑦1 = 𝛿 ∫ ∫ ∫ 𝑧 𝑑𝑧𝑑𝑦𝑑𝑥
(𝑎+𝑥)𝑡𝑎𝑛𝜃

0

𝑞

−𝑞

𝑎

−𝑎
   =

5

8
𝛿 𝜋 𝑎4 (tan 𝜃)2

 (3) 

 

Although not needed for the final calculations, it is of interest to 

calculate the coordinates of the centers of mass of the wedge.  

Dividing Mxy1 by the mass m1 yields the z-coordinate: 
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𝑧1  =  
5

8
 𝑎 tan 𝜃  (4) 

 

The moment in the yz-plane (parallel to the x-axis) is given by:  

 

𝑀𝑦𝑧1 = 𝛿 ∫ ∫ ∫ 𝑥 𝑑𝑧𝑑𝑦𝑑𝑥
(𝑎+𝑥)𝑡𝑎𝑛𝜃

0

𝑞

−𝑞

𝑎

−𝑎
   =

𝜋

4
𝛿 𝑎4 tan 𝜃 

 (5) 

 

Dividing this result by m1 yields the x-coordinate of the center of 

mass of this part: 

𝑥1 =  
𝑎

4
   (6) 

 

(This result seems counterintuitive; it says that the center of mass 

in the x direction does not depend on tip angle .  This implies that 

as  increases, the mass in the wedge increases in the same 

proportion, so the -dependences cancel each other out).   

 

The moment in the xz-plane (parallel to the y-axis) is zero in all of 

these calculations due to the symmetry in this plane.   

 

The calculation of the center of mass for the entire filled container 

will result in different coordinates from these, based on the sum of 

moments of each part.   

 

Part 2 – the liquid cylinder 

 

The mass in the liquid cylinder is derived from the geometry of a 

right circular cylinder, but its height is reduced by an amount 

depending on the tip angle , so the resulting mass is: 

 

𝑚2 =  𝛿 𝜋 𝑎2 (𝑗 − 𝑎 tan 𝜃)  (7) 

 

The moment Mxy2 in the z-axis direction is calculated by the triple 

integral  

 

𝑀𝑥𝑦2 = 𝛿 ∫ ∫ ∫ 𝑧 𝑑𝑥𝑑𝑦𝑑𝑧
𝑞𝑦

−𝑞𝑦

𝑎

−𝑎

𝑗−𝑎 𝑡𝑎𝑛𝜃

0
   =  

𝜋

2
𝛿 𝑎2(𝑗 − 𝑎 𝑡𝑎𝑛 𝜃)2

  (8) 
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where qy = √𝑎2 − 𝑦2 .  The moments Myz2 and Mxz2 are zero by 

symmetry.    

 

Dividing Mxy2 by m2 yields the coordinate of the center of mass of 

this part as  

 

𝑧2 =  
1

2
 (𝑗 − 𝑎 𝑡𝑎𝑛 𝜃)   (9) 

 

Part 3 - Container walls 

 

The container’s cylindrical side is assumed to be thin compared to 

the radius a, so the wall volume is equivalent to the area times 

thickness t.  Then the mass of the wall is  

𝑚3 = 2 𝜌 𝜋 𝑎 ℎ 𝑡   (10) 

By inspection it is seen that the center of mass of the cylindrical 

wall is at h/2, so the moment in the xy-plane is  

𝑀𝑥𝑦3 =
ℎ

2
 𝑚3 .  (11) 

The moments in the other two planes are zero by symmetry.   

 

Part 4 – Container base 

The base is a circular disk with mass  

𝑚4 =  𝜌 𝜋 𝑎2 𝑡   (12) 

Since the base is centered on the origin of coordinates, the moments 

of the base are zero in all three planes.  

 

Total moments and center of mass 

 

The center of mass of a collection of objects is given by the sum of 

moments divided by the total mass.  This calculation must be done 

separately for each of the three coordinates.  The total mass of the 

four parts is  

𝑚 =  𝑚1 +  𝑚2 + 𝑚3 + 𝑚4  

 

=  𝛿𝜋𝑎3 tan 𝜃 + 𝛿𝜋𝑎2 (𝑗 − 𝑎 𝑡𝑎𝑛𝜃) +  2 𝜌𝜋𝑎 ℎ 𝑡 + 𝜌𝜋𝑎2𝑡 . 

 (13) 

 

So for the x-coordinate of the center of mass, we have  
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𝑥𝑚 =  
𝑀𝑦𝑧 

𝑚
=  

𝛿𝜋𝑎4 𝑡𝑎𝑛𝜃

 4(𝛿𝜋𝑎3 tan 𝜃+𝑎2𝛿𝜋(𝑗−𝑎 𝑡𝑎𝑛𝜃)+ 𝑎2𝜋𝜌𝑡+2 𝑎 ℎ 𝜋𝜌𝑡)
 

 (14) 

 

since the three other moments in the yz-plane are zero due to 

symmetry.  

 

The z-coordinate of the center of mass is more complicated, since 

three of the parts have non-zero moments: 

 

𝑧𝑚 =
𝑀𝑥𝑦

𝑚
 =  

5

8
 𝛿𝜋𝑎4  (tan 𝜃)2+

 1 

2
𝛿𝜋𝑎2(𝑗−𝑎 𝑡𝑎𝑛𝜃)2+𝜌𝜋𝑎ℎ2𝑡

𝛿𝜋𝑎3 tan 𝜃+𝑎2𝛿𝜋(𝑗−𝑎 𝑡𝑎𝑛𝜃)+ 𝑎2𝜋𝜌𝑡+2 𝑎 ℎ 𝜋𝜌𝑡
 (15) 

 

Finally, due to symmetry, ym = 0.  

 

Critical tipping angle 

 

It is now possible to calculate the critical tipping angle c using 

the calculated center of mass coordinates: 

 

𝜃𝑐 =  
𝜋

2
− 𝑎𝑟𝑐𝑡𝑎𝑛 (

𝑧𝑚

𝑎−𝑝−𝑥𝑚
) .   (16) 

 

Note that this equation does not give a unique solution for the 

critical angle, but rather a solution in terms of both xm and zm.  The 

tipping angle could exist for a center of mass located anywhere 

along the vertical line from the pivot point.  This means that in 

practice an iterative procedure must be used to identify the critical 

tipping angle.  An initial guess  is inserted into the equations for 

xm and zm, and equation (16) is calculated.  Based on this answer, a 

closer estimate is made, and the calculation is repeated until the 

desired degree of tolerance is achieved.   (Of course this process 

could be automated).   

 

Stability of a cooking system may be defined as its closeness to the 

critical angle c when a large full container of water is placed on 

the cooking surface.  
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Generalizations 

 

The basic method of calculating stability for a container could be 

generalized in several ways, for example:  

• Many vessels are not right circular cylinders but are 

rounded or tapered in shape.  The triple integral method 

could be extended to any shape that is a body of revolution.  

• The method could be extended to the case where the liquid 

level cuts the flat bottom of the container.  The calculation 

for the centroid is much more complicated in this case, but 

it has been done [8] and this would provide a solution for 

large tipping angles.  

 

Conclusion 

 

 Evidence from the field indicates that one of the most common 

burn hazards in the world is the instability of cooking pots and/or 

cookstoves.  This article has reviewed the calculation for stability 

of a cylindrical container as a way of quantifying what “instability” 

means, or when the combination of a vessel and a cookstove may 

be “top heavy”.  Stability of a particular cooking system may be 

assessed by measuring the critical angle when a large container of 

(cold) water is placed on the cookstove.  Designers of cookstoves 

can reduce the risk of this hazard by including a wide base, a wide 

pot holder, and/or a skirt around the cooking pot.   
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