

Using Copper-Resistant Bacteria to Reduce Copper Toxicity in *Shewanella oneidensis* Cr(VI) Reduction Studies



Erica Pehrsson

#### Thomas Jefferson High School for Science and Technology

Mentors: Drs. William Straube and Joanne Jones-Meehan

# Introduction

- Here The most common oxidized states of chromium are hexavalent and trivalent states
  - Cr(VI) is soluble, highly mobile in the environment, and carcinogenic
  - Cr(III) is less mobile and less toxic
- Shewanella oneidensis reduces Cr(VI) to Cr(III) under various conditions:
  - A aerobic and anaerobic environments
  - △ in high and low nutrient levels
  - in the presence of other bacteria, sorbing agents, cationic metals

- Shewanella is inhibited by Cu<sup>2+</sup> at >10 ppm
- Cu<sup>2+</sup> is often present in Cr(VI)-contaminated wastewaters
- **#** *Pseudomonas* is resistant to copper
  - Can sequester copper in extracellular polymeric substances (EPS); bind to proteins in the periplasm
- Here use of Pseudomonas to remove copper toxicity for Shewanella in a bioremediation system was investigated

# Experimentation

Cr(VI) reduction by pure and mixed cultures of DSP10 and 4 *Pseudomonas* strains

## Growth dynamics of DSP10 and 0788-7 in low nutrients

Resistance of *Pseudomonas* to Cu<sup>2+</sup>

## ∺Cr(VI) reduction by column bioreactor



Reaction column with circulation line through a peristaltic pump

#### **Materials and Methods**





LB broth was spiked with concentrations of K<sub>2</sub>CrO<sub>4</sub>

Samples removed at various time intervals

Cr(VI) was measured using Standard Method 3500-Cr Colorimetric Method

#### **Chromate Assay:**

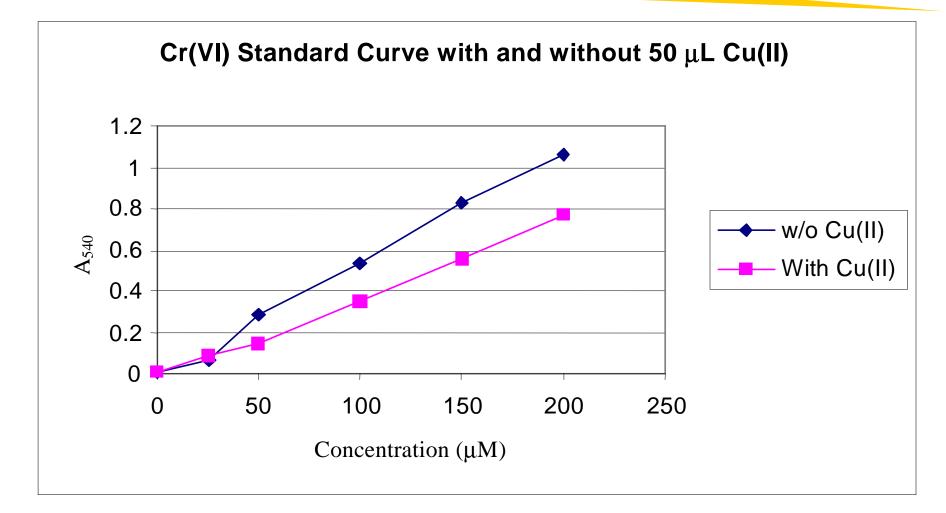
0.5 ml supernatant from centrifuged sample

0.5 ml of 0.2N H<sub>2</sub>SO<sub>4</sub>

0.1 ml diphenylcarbazide solution

Mix and let stand 5-10 minutes for full color development

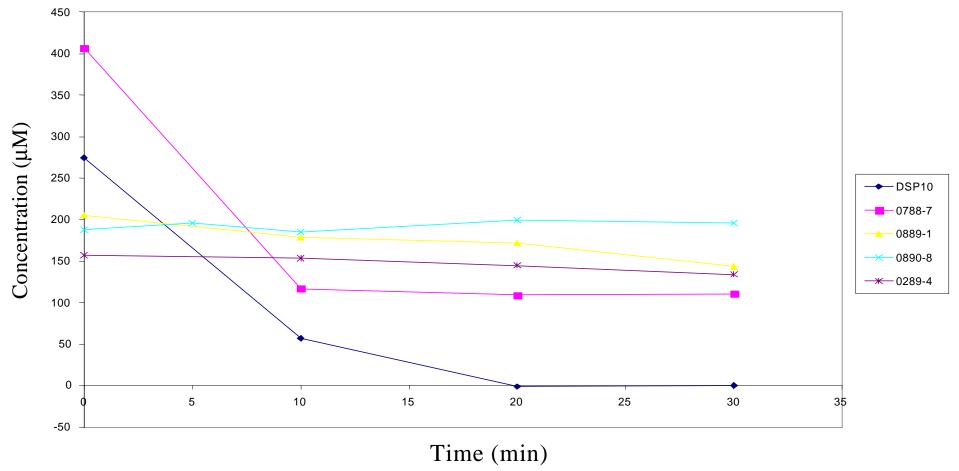
Transfer to a 1-cm absorption cell and measure absorbance at 540 nm Use distilled water as reference (blank)


#### Cr(VI) Detection by the Diphenylcarbazide Method 3500-Cr



Left Tube: Control (reagent blank; no Cr(VI) added) 2<sup>nd</sup> Tube: 5 ppm Cr(VI) 3<sup>rd</sup> Tube: 10 ppm Cr(VI) 4<sup>th</sup> Tube: 15 ppm Cr(VI)

Absorbance measured at 540 nm in Milton Roy Spec20 Micrograms Cr(VI) determined by reference to the standard calibration curve


## **Standard Curve**

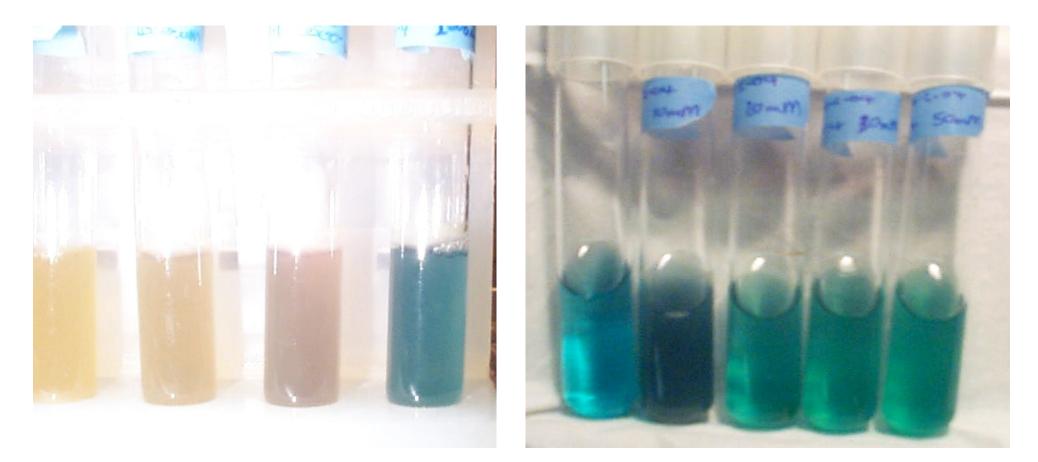


Shift of absorbance values due to presence of copper in solution

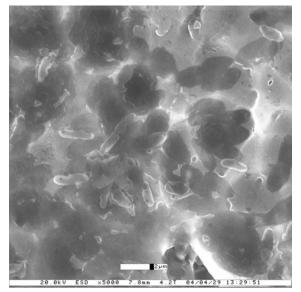
# **Pure Culture Cr(VI) Reduction**

**Cr(VI) Reduction by Pure Cultures** 

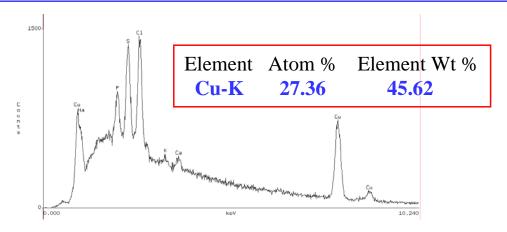



Superior Cr(VI) reduction by DSP10 than 4 pseudomonads

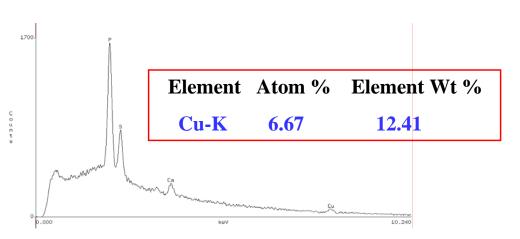
# Low Nutrient Growth of DSP10 + 0788-7


| <b>Bacterial Strain</b> | <b>Day 1 (10-6)</b> | Day 3 (10 <sup>-6</sup> ) | Day 6 (10 <sup>-5</sup> ) |
|-------------------------|---------------------|---------------------------|---------------------------|
| DSP10 colonies          | 365                 | 320                       | 662                       |
| 0788-7 colonies         | 5                   | 21                        | 180                       |
| Ratio                   | 73                  | 15.3                      | 3.7                       |

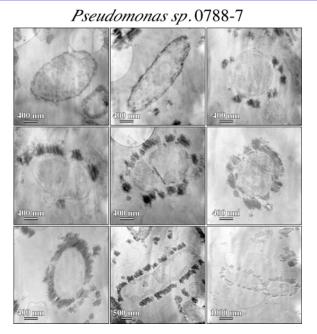
Ratio of DSP10 to 0788-7 decreased over time


# Resistance of *Pseudomonas* to Cu<sup>2+</sup>




1 mM2 mM5 mM10 mMControl 10mM20mM30mM50mMPseudomonas0889-1Pseudomonas0289-4

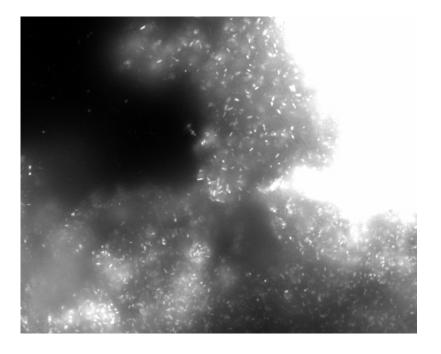


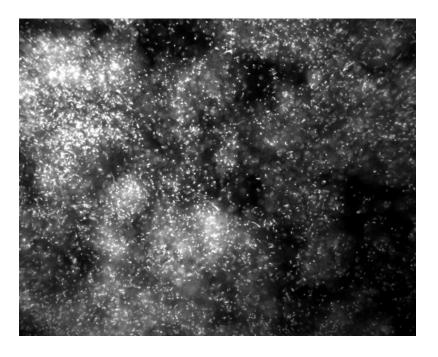

Environmental scanning electron micrograph (ESEM) of *Pseudomonas* sp. 0788-7 cells grown in LB + **1 mM copper sulfate** for 24 h at 25°C with shaking at 125 rpm. **Image shows copious amounts of extracellular polysaccharides (EPS)** 



EDS analysis from strain 0788-7 cells grown in LB with **4 mM copper** sulfate. Note: EDS data showed similar results for the other 3 copper-resistant pseudomonads used in this study




Energy dispersive spectroscopy (EDS) analysis of the extracellular polymeric material from the **1 mM copper sulfate** 24 h culture (sample rinsed 3X in distilled water before ESEM and EDS analysis)




EC-TEM images of **copper precipitates in the EPS surrounding cells** of a copper-resistant pseudomonad

Provided by Richard Ray, Dr. Brenda Little and Dr. Tyrone Daulton (NRL/Codes 73330 and 7430, Stennis Space Center, MS 39529

# Degeneration of Cell Mats in Column by Copper





Day 23: Intact DSP10 biomass before addition of copper – Live cell stain Day 30: DSP10 mat after repeated addition of copper – Many dead cells

# Conclusions

# Pseudomonas is extremely resistant to Cu<sup>2+</sup>

A 12.5% LB environment helps balance growth between DSP10 and 0788-7

- Column bioreactors are effective as bioremediation systems
  - Bacteria should become established before repeated addition of copper
  - Cell biomats protect DSP10 from Cu<sup>2+</sup> to some extent
  - △A strategy for long-term survival of DSP10 against copper must be developed

# **Further Research**

Investigate Cr(VI) reduction by mixed cultures in flasks with copper

How nutrient growth of mixed cultures using DSP10 and other pseudomonads and with the addition of metals (chromium and copper)

### Column studies

- Addition of other copper-resistant bacteria
- Addition of extracellular polysaccharide (EPS) material from pseudomonads
- Addition of heat killed *Pseudomonas* cells

## Acknowledgements

His work was performed under NRL Program Element 0602233N

- I would like to thank Dr. William Straube (Geo-Centers, Inc.) and Dr. Joanne Jones-Meehan (Code 6113) for all of their guidance and technical assistance.
- I would also like to thank the SEAP program for the opportunity to work on a project in microbiology and environmental chemistry.