Refining the Reference Capabilities of an Ion Selective Electrode

Xiaofan Yang

Thomas Jefferson High School for Science and Technology

Dr. David Kidwell Naval Research Laboratory

Ion Selective Electrode(ISE)

Two half-cells
Selective

Responsive to one ion

Reference

Ag/AgC1

Ion Selective Electrode(ISE)

- Selective Coating permeates one type of ion
- Ion permeation gives voltage offset

Ion Selective Electrode(ISE)

- Selective Coating permeates one type of ion
- Ion permeation gives voltage offset

Uses for Ion Selective Electrodes

Water control/ pollution detection Agriculture

Explosives

Food- preservation/processing/eating

Reference Electrode

• Why make it better?

- Potential difference
- Used in all half-cells

Obtain a rod of poly vinyl chloride

Mill the rod into smaller pieces.

Mill the rod into smaller pieces.

Drill all the way through from center.

Drill 3/4th through from other side.

П

Saturated Potassium Chloride

I		
I		

Silver Wire

Optimization

• What has been tested?

- Assorted hole sizes
- Various membrane thicknesses
- Different epoxy coatings
- Durability
- Multiple membrane solutions

Results

Optimization

What has been reviewed?
 Assorted hole sizes

Results

Results

Optimization

What has been reviewed?
 Assorted hole sizes

Various membrane thicknesses

Epoxy Results

- 8005 white Scotch epoxy-18/28 work=64%
- 270 black Scotch epoxy- 22/27 work=81%
- 420 black Scotch epoxy-42/47 work=89%
- Epoxy strengths(strongest to weakest)
 - 420
 - 270
 - 8005

Optimization

• What has been reviewed?

- Assorted hole sizes
- Various membrane thicknesses
- Different epoxy coatings

Durability

• Average life expectancy of 2-3 weeks

- Evaporation
- Membrane malfunction

Optimization

• What has been reviewed?

- Assorted hole sizes
- Various membrane thicknesses
- Different epoxy coatings
- Durability

Membrane Mixtures

• 2 HPVC: 1 PEG-- not viscous

• 1 HPVC: 1 PEG-- high resistance

• 1 HPVC: 2 PEG-- low resistance

Optimization

• What has been reviewed?

- Assorted hole sizes
- Various membrane thicknesses
- Different epoxy coatings
- Durability
- Multiple membrane solutions
 [

Conclusions

Area does not affect resistance

Thicker membrane gives more durability

420 black Scotch epoxy works best

Acknowledgements

Special thanks to Dr. David A. Kidwell and Matthew C. Kinney

THE END