Development of a LabView Interface for CSEM POD Tribological Studies of AFRL "Chameleon" Coatings

Jason Kostelnik DeMatha Catholic High School AFOSR EF-MURI @ NCSU NRL, Code 6176 Richard Chromik and Kathryn Wahl

Chameleon Coatings

- What is tribology?
- What is a coefficient of friction?
 - Equation: μ=Ff/Fn
- What are Chameleon Coatings?
 Composition: Gold, DLC, and MoS2

Project Tasks

 Create a flexible program to measure friction on the chameleon coatings and analyze the results Set up the tribometer How does the humidity affect the coefficient of friction?

POD Tribometer

 Calibration Environment Setup Input: lacksquareRPM Number of Cycles Output: lacksquareVoltage

Data Acquisition Program Instrument Setup and LabView

- Test Parameters
- Acquired Data: Tribometer and Hygrometer voltages

	Number of Cycles	
	RPM	
	Diameter (in mm)	
	Normal Force (N)	
CSEM and Humidity Channels		
r%		
Temperature Channel		
¥		
4	Calibration Constant (Volts/N) 0.00000	
4	Gain 0.00	

Step 4	
Step 4 Switch Right to calculate Number of Points. Switch Left to calculate Points/Cycle. Number of Points Points/Cycle 0.00 Time (in mins)	dt Output 0.0000 Total Linear Distance (in 1 0.00000 Sample Rate 0.00 Beggining Temperature 0.00
OK Button	Ending Temperature 0.00

(m)

Enter this number from the CSEM after the test has run.

Analysis Program

- Determining the Actual Starting and Ending Points
- The Key Feature: Cycle Averaging and Standard Deviation

Results

- Test results of first test on coating CHM1
- Check analysis program to assure the proper numbers were calculated

Results

- Lower friction coefficient when run at low humidity
- Smaller wear track widths when run at low humidity for high gold content sample
- Wear tracks are nearly the same for other samples

Conclusions

- Both of the programs and the tribometer function properly
- Lower Friction Coefficient on every sample when run at low humidity
- Track widths smaller
 at low humidity on the
 high gold sample,
 otherwise, they are
 nearly the same

